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Besides the necessity of the development of sophisticated methods to calculate correlation
energies – be it the coupled-cluster (CC) or the configuration-interaction (CI) methods and
their various approaches – one also accentuate the need for efficient and less demanding
methods in the area of medium and large molecular systems. Therefore, this article proposes
a computational efficient and in our opinion reasonable approach for the calculation of cor-
relation energies for medium and even larger molecules. This approach, named B0, based on
the so-called direct generalized Bloch (DGB) equation which has already been successfully
applied to small systems. Within those considerations the B0 approach showed promising
results so that further investigations are worthwhile. Here, as a further step in the assess-
ment of this method we apply the B0 approach to the Li and Be atoms as well as the LiH
and BeH molecules. Molecules which show open and closed shell characteristics in the equi-
librium and in the case of dissociation as well. The results are compared with CC and CI
and experimental results if available. Since this results are encouraging even when consider-
ing small basis sets and with the prospect of larger molecular systems, therefore, we perform
also B0 energy calculations for the low-lying states of the phenolate anion which for in-
stance can be used in a simple model of the photoactive yellow protein (PYP) chromophore.
Keywords: Ab initio calculations; Generalized Bloch equation; B0-based approaches; Spectro-
scopic constants; Dipole moments; LiH, BeH hydrides; Phenolate anion; Coupled cluster;
Configuration interaction.

It cannot be denied that present day quantum chemistry relies, besides the
theoretical progress, strongly on the computational progress, be it the de-
velopment of algorithms or the development of hardware. The general re-
quirement of today’s computer-aided chemistry (CAC) is both the accurate
and efficient calculation of physical and chemical quantities. That includes,
above all, highly accurate energy calculations – that in turn require an ac-
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curate determination of the electron-correlation energy – without an exces-
sive computational effort. In general, this requirement is still far from being
universally fulfilled. Nonetheless, the successes, especially of the ab initio
methods, have been most remarkable in this regard, as amply documented
by the computations of electronic properties of small and medium-sized
molecules1. Here, the various single-reference coupled-cluster (CC) meth-
ods2–5 or the various multireference (MR) methods6–8 (for an overview, see,
e.g., ref. 12 in ref.9) belong to the most accurate and widely used methods
for the determination of the molecular electronic structure in the CAC.

However, despite the advantages of the CC ansatz, especially in its trun-
cated version, i.e., when considering only the singly (S) and doubly (D) ex-
cited configurations relative to a single reference (SR) wave function (SR
CCSD), or in the widely exploited CCSD(T) method that accounts
perturbatively for triply (T) excited configurations, there are still certain in-
herent problems (see, e.g., ref.10) that limit the general applicability of these
approaches. Especially if we are interested in properties of larger molecular
systems which occur in biochemistry as, e.g., acid derivatives, which act as
a chromophore in photoactive proteins, these methods suffer besides the
inherent problems also from their complexity making high demands on the
computational capacity and equipment.

Thus, it appears that one has to simplify sophisticated methods in order
to reduce the computational effort. However, only so far that the main
characteristic features of molecular systems can be covered by such
method. To achieve these requirements we exploit the so-called B0 ap-
proach which is based on the direct generalized Bloch (DGB)11 method. In
the first place of this assessment of the B0 approach we apply this DGB ap-
proximation to the Li and Be atoms and afterwards to the LiH and BeH
molecules so that we can compare the results with highly accurate CC and
CI results and experimental results if available. In a next step with regard to
larger molecular systems we apply the B0 approach to the phenolate anion.
This is motivated by the fact that a phenolate anion surrounded by amino
acids can be used as a simple model for the photoactive yellow protein
(PYP) chromophore12. Where, the PYP is a small soluble protein found in a
halophilic bacterium used therein as a light sensor. Therefore, studies of
PYP are not only of theoretical interest, but also are useful to understand
the behavior of other visual pigments, such as the rhodopsins.

The theoretical consideration of the DGB method and, especially, of the
B0 approach is shown in Section I. Then, numerical considerations are dis-
cussed in Section II and results of various approximations are shown in Sec-

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Direct Generalized Bloch Approach B0 1273



tion III. Finally, Section IV gives a summary on this alternative method and
its variants.

I. THEORETICAL CONSIDERATION

Here, we present a brief summary of the direct iterative approach to the so-
lution of the generalized Bloch equation (for more details we refer to ref.11).

The general MR approaches employ the concept of the reference space M0,
representing a suitable, finite-dimensional subspace of the N-electron space
V which is spanned by all possible N-electron configuration states (or Slater
determinants) Φα. In all practical calculations, V is also finite-dimensional
and is given by the choice of the atomic orbital (AO) basis set defining a
given ab initio model. An n-dimensional (complete or incomplete) reference
space M0 is defined as a linear span of n orthonormal configurations Φα,
α ∈ ≡I np { , , }1 L , the remaining configurations Φα, α ∈ ≡ + +I n n mq { , , }1 L

defining its orthogonal complement M 0
⊥ in V. The orthogonal projectors

onto M0 and M 0
⊥ are then designated by $P and $Q, respectively, so that

$ $ $P Q+ = 1, the identity operator on V = M0 ⊕ ⊥M 0 .
The basic assumption of any MR approach is that with a suitably chosen

set of n exact N-electron eigenstates Ψa (a ∈ Ip) of a given Hamiltonian $H,

$ ,H E a Ia a aΨ Ψ= ∈ p , (1)

referred to as the target states, we can associate an n-dimensional reference
space M0 providing a reasonable zero-order approximation for Ψa in a sense
that their projections onto M0, $ ( )P a aΨ Ψ= 0 , a I∈ p , span M0, so that

M 0
0= ∈ = ∈span spanp p{ | } { | } .( )Ψ Φa a I Iα α (2)

Here Ea (a I∈ p ) designate the corresponding exact eigenvalues of $H, and the
n-dimensional space M = span { | }Ψa a I∈ p is referred to as the target space. In
the intermediate normalization,

〈 〉 = 〈 〉 = ∈Ψ Ψ Ψ Ψa a a a a I( ) ( ) ( )| | ,0 0 0 1 p , (3)
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the target states Ψa (a I∈ p ) may be represented as follows

Ψ Ψ Ψ Φ Φa a a
a

I

a

I

g c= + = +⊥

∈ ∈
∑ ∑( ) ( ) .0

α α
α

λ λ
λp q

(4)

With this formulation, the main task is to set up the equations of motion
that enable us to determine the energies Ea as well as the coefficients
g a

aα α= 〈 〉Φ Ψ| , (a I, α ∈ p ), and the wave function expansion coefficients
(WECs) ca

aλ λ= 〈 〉Φ Ψ| , (a I I∈ ∈p q, λ ), defining the reference space compo-
nent Ψa

( )0 and the outer space component Ψa
⊥ of Ψa, respectively.

In order to determine the outer part of Ψa that is responsible for the dy-
namic correlation, we rely on the generalized Bloch equation
$ $ $ $ $( ) ( )U H U H Ua aΨ Ψ0 0= , which is obtained by acting with the so-called
wave-operator $U on the Schrödinger equation (1) (for details, see ref.11).
This equation then determines the outer space coefficients

c U U a I Ia
a aλ λ λ λ= 〈 〉 = 〈 〉 ∈ ∈Φ Ψ Φ Ψ| $ | | $ | , ,( )0

p q , (5)

as well as an effective Hamiltonian $ ( )H eff to determine the g a
α coefficients

(see ref.11). In matrix form, the Bloch equation can be represented as fol-
lows

〈 − 〉 =� �q |( $) $ $ | ( )1 00U HU (6)

while the energies are given by

E = 〈 〉~
| $ $ | ( )� �( )0 0HU (7)

where
~
� ( )0 represents the corresponding dual basis of � ( )0 . These two

equations, Eqs (6) and (7), thus represent the basic formulas for the deter-
mination of the explicit representation of the equation for the outer space
coefficients:

H c c Ha
a

a
a

a a~ ( ) ( )λ λ λ λ λ λ
2 0− − + =Λ Γ (8)

where
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Λ λ λλ µ µ
µ λ

λ λa aa a
a

I
b

b

b I a

H H H c H c= − − −
∈ ∈
∑ ∑~ ~

\

~

\q p

(9a)

Γ λ λµ µ
µ λ

λ λ µ

µ

a
a

I
ba

b

b I a

b

b
b I a

I

H c H c c H= − −
∈ ∈ ∈

∈

∑ ∑
q p p

q

\

~

\

~

\
\

.

λ

µ∑ ca (9b)

Solving Eq. (8) for ca
λ , we obtain

c H H Ha
a

a
a a a a a

a
λ λ λ λ λ λ λ λ λσ σ= − + +1

2
2 1 24{ ( ) ( )] } / ,~

/
~Λ Λ Γ[ = sgn( )Λ λa , (10)

which leads directly to an iterative scheme (e.g., by using the Jacobi–Newton
algorithm). Here, i.e. Hλµ stands for the matrix element of the Hamiltonian
$H and the functions labeled by λ and µ, respectively.

As in our former calculations11 we exploit here the state-selective or
state-specific (SS) version of the DGB formalism, by focusing on one state at
a time. In terms of the general MR formalism this implies that we only re-
quire the zero-order approximation in the iterative scheme for the effective
Hamiltonian. Thus, to obtain suitable reference states, we first diagonalize
the Hamiltonian within the model space M0, obtaining the zero-order
eigenstates | ( )Ψa

0 〉,

| | , | , ,( ) ( ) ( ) ( )Ψ Φ Ψ Ψa a
I

a b abq a b I0 0 0〉 = 〉 〈 〉 = ∈
∈
∑ α

α
α δ

p

p , (11)

and the corresponding eigenvalues E Ha a a
( ) ( ) ( )| $ |0 0 0= 〈 〉Ψ Ψ . We then partition

M0 into a one-dimensional reference M 0
( )a , M 0

( )a = span {| ( )Ψa
0 〉} correspond-

ing to | ( )Ψa
0 〉, and the associated residual reference space R 0

( )a ,
R 0

0( ) ( ){| | \{ }}a
b b I a= 〉 ∈span pΨ , as follows

| | | | .( ) ( )

( )

Ψ Ψ Ψ Φλa a b
a

b
b I
b a

a

I

c c〉 = 〉 + 〉 + 〉
∈

≠
∈

∑ ∑0 0

p q

λ
λ

(12)

Eventually, |Ψa 〉 represents the same state as |Ψa 〉 except for the normaliza-
tion and, likewise, c a

λ represent renormalized coefficients ca
λ of Eq. (10). The

coefficients cb
a , associated with R 0

( )a , should play only a secondary role, so
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that || || , \{ }c b I ab
a << ∀ ∈1 p , since the static, and most of the non-dynamic,

correlation effects should be already accounted for in | ( )Ψa
0 〉, i.e. in M 0

( )a , so
that M 0

( )⊥ will be responsible primarily for the dynamic correlation.

II. NUMERICAL CONSIDERATION

A. Computational Details

Of course, the structure of the SS reference space M 0
( )a , and of the residual

space R 0
( )a , crucially depends on the N-electron configuration state func-

tions (CSFs) |Φλ〉 that are employed. For these CSFs we employ the
$S z -adapted Slater determinants or, respectively, linear combinations of Slater
determinants which represent symmetry-adapted states. We refer to such a
formalism as the SS single configuration (SC) approach and, in particular,
since our current codes allow only to handle reference configurations con-
sisting of at most two determinants, as the 1D or 2D SS approach.

Here, the 1D SS-SC approach can be applied, e.g. to the closed-shell
ground states and the high-spin open-shell states, while in particular the
2D approach is necessary for the singlet excited state. In view of our earlier
results, we primarily exploit the B0, BD2, BQ2, and BQe2 approximations,
with the emphasis on B0 (for more details of the various DGB approaches
we refer to the ref.11 especially, cf. d) of ref.11). We recall that in the 1D or
closed-shell case, the BD2 and BQe2 approximations are equivalent to the
standard SR CISD and CCSD approaches, respectively. The B0 approach is
the simplest and therefore computationally most efficient approach in the
hierarchy of the DGB methods, since it relies only on singly and doubly ex-
cited WECs where the Γλa parts of Eq. (10) are neglected. It is therefore
worthwhile to assess the reliability of the B0 approach for the determina-
tion of the spectroscopic quantities, since it can be easily exploited even for
rather large systems.

Moreover, we will here exploit a kind of internal correction in order to
improve the B0 approximation on a low level of computational cost. A ba-
sic step in each calculation of the correlation energy is a single iteration
step in which each WEC is recalculated by Eq. (10). Now, the internal cor-
rection is based on this Γλa term (neglected in B0). At a certain step of itera-
tion we take into account these terms at a higher level of DGB approaches
like e.g. BD2 or BQe2 just for one iteration step. In the rest of the B0 itera-
tion this terms will be kept frozen. This leads in principle to a plethora of
various internal corrections, here designated as B0[app], where app stands
for the internal DGB approach used. Thus, an internal correction based on

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Direct Generalized Bloch Approach B0 1277



BD2 is called B0[D2]. Besides the kind of level (app) of internal correction
the question arises at which step this correction has to be incorporated. In
our investigations the best results occur at a difference of successive correla-
tion energies of 10–5: |E(i) – E(i – 1)| ≈ 10–5 which is here used for the calcu-
lation of the internal corrections. Of course, this modus operandi can also
be applied at the end of the iteration, which has been already successfully
utilized in former calculations11. It means we perform an additional itera-
tion step with the obtained B0 coefficient but at a higher level of approxi-
mation of the WECs included in the Γλa terms. In the following the nota-
tion of these approaches is given as B0[app1, app2] where app1 belongs to
the internal correction of the B0 coefficients whereas the second term app2
represents the kind of the additional iteration step at the end in our ap-
proximation scheme. If only one of these types of approaches is applied,
the other one will be represented as dash, i.e., e.g., for the BD2 internal cor-
rection we have B0[D2,–] and vice versa. Here, it should also be mentioned
that to simplify matters we will discard the ‘B’ in the label of the DGB ap-
proaches for labels of app. Of course, this procedure is not invariably as-
signed to B0 but also to other approaches of the DGB method. At that point
it should be stressed that besides the internal corrections one can also use
external coefficients in the calculations of the Γλa terms for the WECs of
higher excitation than singly and doubly excited determinants. In this con-
text, however, we have to search for a source of coefficients which is effi-
ciently accessible, especially with regard to its computational demanding.
For the application of external corrections in connection with the CCSD
method, we refer to the refs4,8,14–16.

Beside these internal corrections we also investigate the so-called
size-extensivity corrections added on top of the DGB calculations. These
corrections are originally designed for the CISD approximation to correct
the size-extensivity shortcoming of truncated CI methods. Here, we will ap-
ply the following corrections, labeled by the initials of the name who intro-
duced these corrections (cf. also ref.17):

1. Davidson18,19 : E E Cdc corr o= −( )1 2 (13)

2. Renormalized Edc
20 : E

E

C
rdc

dc

o

=
2

(14)

3. Davidson–Silver21 : E
E

C
dsc

dc

o

=
−2 12

(15)
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4. Pople22 : E E
n n t n

tpc corr
o o o=

+ −
− −

( tan ( ))

(sec( ) )

2 2

2 2 1 1

2

(16)

5. Duch–Diercksen23 : E
E

n n C
ddc

dc

o o o2((
=

− − −1 2 12) / ( ))
(17)

6. Meissner24 : E E
n n

n nmc rdc
o o

o o

=
− −

−
( )( )

( )
2 3

1
(18)

7. Molnar–Szalay25 : E E
n n n n

n n n nmsc dc
o o v v

o o v v

=
− − − −

− −
( )( )( )( )

( ) ( )
2 3 2 3

1 1
(19)

where Ecorr is the correlation energy, no is the number of active electrons, nv
is the number of active (vacant or unoccupied) spin-orbitals, and t is de-
rived from cos (t) = Co with Co the renormalized coefficient of the reference
wave function of the DGB approach applied. As we can see the Duch–Diercksen
correction (Eddc, Eq. (17) is a modification of the Davidson–Silver correction
(Edsc, Eq. (15)), which also holds for the Pople correction (Epc, Eq. (16)). Fur-
thermore, Eq. (18) and Eq. (19) are almost equivalent if the renormalized
and the original Davidson correction hardly differ from each other in the
case that we exploit a large basis set. Then the last part of the
Molnar–Szalay correction, which takes into account the finiteness of a nu-
merical basis set by the number of active orbitals, nv, approaches the value
one. On the other hand, if we take a look at the first three corrections, they
should not differ from each other if the reference function represents the
main contribution to the state of consideration. This means the coefficient
Co is of the magnitude ≈1 so that these approaches are almost equivalent.
Thus, at least we can arrange three types of corrections where the first type
comprises the corrections Eq. (13), Eq. (14), and Eq. (15), the second Eq.
(16) and Eq. (17), and the third type contains the corrections Eq. (18) and
Eq. (19). Since we are interested in the DGB method and these corrections
are originally added to the CISD approach, as mentioned, therefore we have
to employ the BD2 scheme instead of CISD. Thus, we will designate these
corrections as BD2app, where app represents the abbreviations for the
size-extensivity corrections used in Eqs (13)–(19). Moreover, we will apply
these corrections to the approach we are focused on, the B0 scheme. For
more insight into these corrections, we refer to the original literature and,
e.g., ref.17.
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B. Spectroscopic Constants

To test the quality of the approximation schemes, especially in the neigh-
borhood of the equilibrium geometry of the system considered, the spectro-
scopic constants, excitation energies, and ro-vibrational energy levels are
good quantities for an assessment which can, moreover, be compared with
available experimental data.

Now, a computed potential-energy curve (PEC) is best assessed by gener-
ating the ro-vibrational energies26,27. In order to do so, here we employ the
LEVEL package of LeRoy28, which solves the radial one-dimensional
Schrödinger equation

− + =h

2

2

2µ

d

d

Ψ
Ψ Ψv J

J v J v J

R

R
V R R E v J R,

, ,

( )
( ) ( ) ( , ) ( ) (20)

where VJ (R) is given by a sum of the electronic potential energy (here repre-
sented by our computed PEC) and of a centrifugal term, to obtain the vibra-
tional (v)–rotational (J) energy levels E(v,J) for the molecular state consid-
ered, as well as the rotational constants Bv, Dv, and Hv which depend on the
vibrational quantum number v (see below).

Then, the computed ro-vibrational energies E(v,J), and the rotational con-
stants, Bv, Dv, and Hv, can be used to determine other spectroscopic con-
stants (with respect to the equilibrium geometry of the diatomic molecule)
by relying on the Dunham expansion and the techniques used in the analy-
sis of the experimental data. For this purpose we employ the following ap-
proximations for the ro-vibrational term values

E v J G v F J

G v v x v

y

v( , ) ( ) ( )

( ) ( / ) ( / )

(

= +

≈ + − + +ω ω

ω
e e e

e e

1 2 1 2 2

v z v

F J B J J D J J Hv v v v

+ + +

≈ + − + +

1 2 1 2

1 1

3 4

2

/ ) ( / )

( ) ( ) ( ( )) (

ωe e

J J( ))+ 1 3

(21)

and for the rotational constants

B B v v

D v

H H

v

v

v

≈ − + + +
≈ + +
≈

e e e

e e

e

α γ
β

( / ) ( / )

( / )

.

1 2 1 2

1 2

2

D (22)
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We then compute the spectroscopic constants ωe, ωexe, ωeye, ωeze, Be, αe, γe,
De, βe, He using the difference method11,26. For instance, representing the
vibrational values G(v) = E(v,0) as polynomials in x = v + 1/2, namely
G v G x G a xx i

i

i

n
( ) ( )≡ − ≡ =

=∑1 2
1

, we obtain the k-th difference ∆kGx for any
fixed value ξ of x by a linear combination of the spectroscopic constants ai,

∆ ∆ ∆k k k
i

k
i

i

n

G G G c aξ ξ ξ ξ: ( )( )= − =−
+

−

=
∑1

1
1

1

(23)

with coefficients ci
k( ) given by

c
k

j
k ji

k j

j

k
i( ) ( ) ( ) ( ) .ξ ξ= −







− +
=

∑ 1
0

(24)

This implies that for a chosen fixed value of n, the n-th coefficient an is
given by the n-th difference ∆nGx,

a n G G mn
n

x
n m

x= = = …− +( !) , , , , .( )1 0 1 2 3∆ ∆and for (25)

Thus, assuming that the n-th difference of term values Gx are x- or v-inde-
pendent, we then determine the desired ai values, i = 1, …, n (or the spec-
troscopic constants a1 = ωe, a2 = –ωexe, …) by solving the system of equa-
tions (23) choosing ξ = 1/2, i.e., v = 0. This is easily done via back-
substitution. An analogous difference scheme is also applied to Bv, Dv, and
Hv.

A further point of view to evaluate the quantity of the wave function of
the underlying approximation is the determination of so-called response
properties for a molecular system immersed in a weak field of interest. For
instance, in the case of an electric field E, these properties are the electric
dipole moment µ or hyperpolarizabilities like α, β, or γ. The most straight-
forward method of computing these properties is the so-called finite-field
(FF) method29. The energy change ∆E when the system is exposed to a ho-
mogeneous electric field along one direction can be written as

∆E E E≡ −

= − − − − …

( ) ( )

! ! !

E

E E E E

0

1
2

1
3

1
4

1 2 3 4µ α β γ
(26)
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where E(0) designates the energy of the system with no field applied. For
linear diatomic hydrides in a uniform electric field along the molecular axis
– considering a weak field E – we can approximately evaluate the dipole
moment µ, dipole polarizability α, or the hyperpolarizabilities up to the
quartic term, β and γ, if we compute ∆E, Eq. (26), for a few values of an elec-
tric reference-field E: 0, ±E, ±2E, as follows30

µE E E E E1 2
3

1
12

2 2= − + − − + + − −( ( ( )) ( ( ) ( ))E E E E) (27)

αE E E E E2 5

2
= − + + − + + + −E E E E E( ) ( ( ) ( )) ( ( ) ( ))0

4
3

1
12

2 2 (28)

βE E E E E3 1

2
= + − − − + − −( ( ) ( )) ( ( ) ( ))E E E E2 2 (29)

γE E E E E4 = − + + + − − + + −6 0 4 2 2E E E E E( ) ( ( ) ( )) ( ( ) ( )) . (30)

The principal weakness of the FF approach stems from the contrary de-
mands which are imposed on the numerical differentiation of the energy.
On one hand, we have to use very small fields to obtain an accurate ap-
proach of the derivatives and, on the other hand, this requires a very high
precision of the computed energies E(E). Since analytical derivatives for the
DGB methods (cf. h) of ref.11) are not yet implemented, therefore we are us-
ing the FF approach to calculate the dipole moment µ and the dipole
polarizability α. If not explicitely mentioned in the following applications,
we have chosen the reference field strength to be E = 0.002 a.u. and the en-
ergy to be converged to at least 10–8 a.u.

III. APPLICATIONS

First, we will apply the DGB method addressed in Section I and Section II to
the Li and Be atoms as well as to the molecules LiH and BeH. As recently
shown, an encouraging DGB approach is BQ2 which shows promise in dif-
ferent applications11 such as, for instance, when dissociating the N2 mole-
cule where the CCSD method fails10. Here, in contrast to BQ2, CCSD yields
a potential energy curve with a huge hump at the intermediately stretched

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

1282 Meissner:



geometries, especially in the single reference case when the restricted
Hartree–Fock (RHF) configuration is used. However, since we are interested
in simple methods to calculate physical and chemical properties of molecu-
lar systems, we will turn our attention to the DGB approach B0 and to de-
rivatives of the B0 scheme as well. But in order to obtain an assessment of
this approximation even for small molecules, where highly accurate calcu-
lations can be performed, we will consult besides BQ2 also the sophisticated
methods BD2 and BQe2 and, if applicable, the BQmf approach. On the other
hand, we even have to take into account simple calculation schemes which
can be used to estimate correlation energies in the case of large molecules
as the perturbation approach MP2. Moreover, to obtain an insight into the
B0 method, we also compare the results with experimental values if avail-
able. Finally, we consider as mentioned the phenolate anion. Here, we only
apply the B0 approach to the equilibrium geometry of the isolated anion to
calculate the energies of the ground and low-lying excited states.

A. Application to Li and Be Atoms

We start our assessment of the B0 approach by considering a simple atomic
system, the lithium atom. First we consider the ground state and the first
seven excited states as well. Since we deal with a three-electron system and
use a double-zeta basis set cc-pVDZ 32, it is practicable to perform a full con-
figuration interaction (FCI), i.e. CISDT calculation. The results of the FCI
and the deviations of the DGB approaches, mentioned above, as well as of
the MP2 and size-extensivity BD2 corrections of Eqs (13)–(19) are reported
in Table I. Here, we used the relative and therefore dominant Slater deter-
minant for the reference function of each state shown in Table I. Now, if
we take a look on the differences of B0, ∆(B0), we see that for the first six
states the B0 approach leads to nearly the same accuracy of energy. For the
last two excited states 2S(1s12s2) and 4P(1s12s12p1), the accuracy of the en-
ergy significantly deteriorates. This indicates the different characters of
these states compared to the other states. In these cases the description of
the reference state by one determinant is not anymore sufficient. If the ref-
erence state is at least built up by a linear combination of two determi-
nants, the deviations can be reduced. Then, we obtain for the 2S(1s12s2)
state ∆(B0) = 9.142 mhartree and for 4P(1s12s12p1), ∆(B0) = 7.880 mhartree.
Considering the Co coefficients of the reference states in the case of BD2,
given in Table I, and used in the size-extensivity corrections, the coeffi-
cients reflect the reference character of the states. Here, the values of the
coefficients of the latter states are far less than 1.0 whereas the coefficients
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of the remaining states are close to the value of 1.0. A closer look reveals
that the first two excited states show a small deviation of the one determi-
nant character which is also reflected in the results of the DGB approaches
and the size-extensivity corrections as well. Here, one can observe that the
corrections of BD2 do not improve the energy, even more deteriorate the
energy of the excited states which show a multi-determinant character of
the reference function. The results of the size-corrections of BD2 also show,
as already mentioned, the three kinds of corrections: 1. BD2dc, BD2rdc,
BD2dsc; 2. BD2pc, BD2ddc; and 3. BD2mc, BD2msc. It should also be men-
tioned that in this case of a three-electron system, the results of BD2mc are
equivalent to BD2, which also holds for BD2msc.

In comparison to the B0 approach, the MP2 approach does not give con-
sistent results. To complete the consideration, Table I also shows the results
of the BD2, BQ2, and BQe2, as well as the BQmf approach. As might be ex-
pected, we observe that BQmf leads to results of almost FCI accuracy. Thus,
we have the following hierarchy B0 < BD2 < BQ2 < BQe2 < BQmf whereas
MP2 overall shows a quite different and less satisfying quality of the results.

Next, we consider the α and γ polarizabilities of the Li atom. The com-
puted total energies and the dipole polarizabilities, α, as well as the
hyperpolarizability, γ, obtained with various methods are compared with
experimental values in Table II. Since the computation of the hyper-
polarizability, particularly when using the FF method, is more challenging
with respect to the basis set and the accuracy of the energy, we are thus em-
ploying the fairly large quadruple zeta basis set cc-pVQZ 32 and, as men-
tioned, we required that the energy is accurate to at least 10–8. Furthermore,
in order to obtain an insight into the stability of the calculation performed,
we exploit two different strengths of the reference field E, namely E = 0.001
a.u. and E = 0.002 a.u. Considering the results of α of Table II, one can state
that except B0[D2,D2] all approaches are showing relatively stable results
with respect to the reference filed E. This also holds for the γ values if we ig-
nore the internal corrected B0 approximations. Here, we obtain an unstable
behavior which is also shown by the FCI values, however, not at the same
scale. These results seem to indicate that we can rely more on the larger ref-
erence field E = 0.002 than on smaller reference fields if at all when consid-
ering higher-order properties (cf. ref.33). Thus, as already mentioned and for
the sake of comparison, we shall use in the following calculation of dipole
moments (µe at the equilibrium geometry) the reference field E = 0.002.

Now, the computed total energies show expected results: the SCF energy
covers 99.5621% of the FCI energy and 99.3934% of the estimate of the ex-
act energy35, a deviation in the order of magnitude of about 0.5%. Com-
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paring the values of the MP2 approach and the B0 approach, either of them
recovers almost the entire correlation energy: MP2 99.9427% of FCI
(99.7734% of the exact energy) and B0 99.9704% of FCI (99.801% of the
exact energy). However, the B0 approximation can be improved by the in-
ternal corrections, especially if we consider the B0[D2,D2] (99.9994% of FCI)
which in this case is almost the result of the CISD equivalent BD2. Con-
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TABLE II
Energies (E, in hartree) and polarizabilities α and γ (in a.u.) of the Li atom obtained with
various methods and the quadruple zeta basis sets cc-pVQZa based on the finite field
methodb (the strength x of the reference field E are given in a.u., E(x); numbers in parenthe-
ses of the γ values give the exponents in base 10)

Method E

E(0.001) E(0.002)

α γ α γ

SCF –7.432697 170.00 –6.8620(+05) 169.99 –6.2989(+05)

MP2 –7.461114 165.10 –5.7554(+05) 165.09 –5.2710(+05)

B0 –7.463181 164.37 –5.6045(+05) 164.36 –5.0975(+05)

B0[–,D2] –7.465178 164.47 1.0510(+06) 165.00 –5.3193(+05)

B0[D2,–] –7.465192 164.41 1.2440(+06) 165.00 –5.2951(+05)

B0[D2,D2] –7.465345 159.61 9.8899(+06) 165.27 –6.6380(+05)

BD2 –7.465358 165.03 –5.0979(+05) 165.04 –5.2855(+05)

BQ2 –7.465359 165.06 –5.1258(+05) 165.07 –5.3063(+05)

BQe2 –7.465359 165.06 –5.1286(+05) 165.07 –5.3075(+05)

BQmf –7.465386 164.97 –5.0943(+05) 164.97 –5.2802(+05)

BD2dc –7.465475 164.99 –5.0904(+05) 165.00 –5.2883(+05)

BD2rdc –7.465475 164.99 –5.0904(+05) 165.00 –5.2884(+05)

BD2dsc –7.465476 164.99 –5.0904(+05) 165.00 –5.2884(+05)

BD2pc –7.465397 165.02 –5.0954(+05) 165.03 –5.2864(+05)

BD2ddc –7.465397 165.02 –5.0954(+05) 165.03 –5.2864(+05)

BD2mcc –7.465358 165.03 –5.0979(+05) 165.04 –5.2855(+05)

FCId –7.465389 164.95 –4.7200(+05) 164.97 –5.3188(+05)

Estimatee –7.478062f 164.00 164.00

a From ref.32 b See ref.30 c For three-electron systems BD2mc and BD2msc are equivalent to
BD2. d Obtained with GAMESS 31. e From ref.34 f The most recent nonrelativistic estimate of
the exact energy35.



sidering the corrected BD2 results, from BD2dc to BD2mc, we can here iden-
tify the same groups of corrections as before. Here, it should be stressed
that all corrected BD2 results, except BD2mc, overestimate the energy of the
FCI calculation. The best estimation of the ground state energy is given by
the BQmf approach. This also holds for the polarizabilities α and γ.

Besides the Li atom, we now assess the B0 approach at a next simple
atomic system which represents a closed-shell system, the Be atom. The re-
sults of the ground state and few excited states are shown in Table III. Here,
besides the B0 approach, as in the case of the Li atom, we also report the re-
sults of different levels of the DGB scheme and the MP2, the size-corrected
BD2 approaches and the FCI values as well. Moreover, we used the [7s3p1d]
basis set36. In the case of the FCI results we only obtained an estimate of
the energy of the 3P(2s13p1) excited state since the FCI calculation did not
converge for this state. It means that we have to be cautious about the devi-
ations with regard to this state. Here, the BQmf should represent a reason-
able result if we take into account the results and the deviations of the en-
ergies of the other states. Considering the deviations of the B0 approach,
we obtain a systematic – here underestimating – representation of the ex-
cited states which is correlated to the coefficient Co of the reference state of
the BD2 mirrored also in the results of the size-corrected approaches. The
larger the deviation of the coefficient Co with respect to 1.0, the larger the
error. This also indicates as in the case of Li atom that the reference state
has to be represented by a larger reference space than used. In this context
the 1S(2p2) stands for a state which at least needs a three-dimensional refer-
ence space to reach a reasonable result. Comparing the results of the MP2
and B0 approaches, Table III shows clearly without ambiguity the better
performance of the B0 approach. Moreover, considering the other DGB ap-
proximations aside from BQmf, the BQ2 represents overall a reasonable ap-
proach for ground and excited states as well although the BQe2 leads to a
better result for the ground state. Also here we can recognize the structure
of the Co coefficients. Finally, if we take a look at the BD2 approach and its
corrections, the second part of Table III gives the impression that the cor-
rections of BD2 do not always lead to improved results, far more they lead
to deteriorated values for the excited states. The only exceptions are given
by the BD2mc and BD2msc estimates.

B. Application to the LiH Molecule

Although we are in the long run interested in larger molecules, we here ap-
ply our simple approach B0 to simple systems to get an idea of the perfor-

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Direct Generalized Bloch Approach B0 1287



Collect. Czech. Chem. Commun. (Vol. 70) (2005)

1288 Meissner:

TABLE III
Full CI energiesa (FCI, in hartree) and deviations (∆(app), in mhartree) from FCI energies of
ground and excited states of the Be atom obtained with MP2 and different DGB approxima-
tions (app) using the [7s3p1d]b basis set

State ∆(MP2) ∆(B0) ∆(BD2)c ∆(BQ2) ∆(BQe2)d ∆(BQmf) FCIa

1S(2s2) 19.980 2.118 1.545 0.327 0.241 0.025 –14.634890
3P(2s12p1) 8.884 8.883 2.034 0.328 0.756 0.112 –14.533527
1P(2s12p1) 10.830 2.428 1.124 0.063 0.313 –0.059 –14.431321
3S(2s13s1) 8.717 4.589 1.130 0.239 0.464 0.086 –14.377601
3P(2p2) –1.873 9.269 3.425 0.457 5.585 0.507 –14.359603
1S(2s13s1) 12.197 3.381 1.554 0.167 0.507 –0.014 –14.354369
1D(2p2) –38.599 11.367 4.028 0.371 6.678 0.467 –14.352995
1P(2s13p1) 24.163 15.304 6.263 1.182 2.410 0.144 –14.276303
1S(2p2)e – – – – – – –14.273123
3P(2s13p1) –3.823 –4.834 –13.579 –16.150 –10.903 –16.377 (–14.248049)f

State ∆(dc)g ∆(rdc)g ∆(dsc)g ∆(pc)g ∆(ddc)g ∆(mc)g ∆(msc)g C0

1S(2s2) –3.722 –4.226 –4.835 –1.333 –1.485 0.584 0.754 0.91
3P(2s12p1) –3.898 –4.653 –5.626 –1.296 –1.536 0.920 1.151 0.89
1P(2s12p1) –2.421 –2.676 –2.972 –0.774 –0.847 0.491 0.636 0.93
3S(2s13s1) –1.239 –1.396 –1.576 –0.132 –0.176 0.709 0.779 0.94
3P(2p2) –11.977 –15.528 –21.208 –5.929 –7.287 0.266 1.086 0.81
1S(2s13s1) –3.083 –3.564 –4.156 –0.998 –1.145 0.701 0.869 0.91
1D(2p2) –20.028 –27.478 –41.612 –11.364 –14.611 –1.233 0.213 0.76
1P(2s13p1) –21.313 –35.938 –83.596 –13.532 –22.453 –0.771 2.469 0.65
1S(2p2)e – – – – – – – (0.56)
3P(2s13p1) –14.046 –14.144 –14.296 –13.858 –13.895 –13.673 –13.618 0.82

a Obtained with GAMESS 31. b From ref.36 c For ground states BD2 is equivalent to CISD. d For
ground states BQe2 is equivalent to CCSD. e Here, at least, a three-dimensional reference
space is needed (see text). f No convergence reached (see text). g Correlation-energy correc-
tions based on BD2 (i.e. BD2app, see text).



mance of this approximation scheme where highly accurate results are
available – be it from the experimental or computational side. First of all, in
order to follow the first parts, we consider the LiH molecule. To assess the
B0 approach we have calculated the potential energy curves (PECs) ob-
tained with the correlated basis sets cc-pV(D,T,Q)Z 32. Based on these PECs
spectroscopic constants, as described in Eqs (21) and (22), the dipole mo-
ments at the equilibrium geometries and the dissociation energies as well
are reported at the B0 level in Table IV. For comparison different DGB ap-
proximations, as described in Section II.A, MP2 and FCI values as well as ex-
perimental results are shown in Table IV. Here, it should be stressed that
the dissociation energies reported in the Tables are calculated from the dif-
ference of the energies at the equilibrium geometries of the molecule and
the sum of the energies of the atoms in the ground states (infinite separa-
tion), i.e. De = E(Li) + E(H) – E(LiHeq) (in cm–1). The dipole moments are ob-
tained with the FF method as described in the last section. In addition to
the standard DGB approximations the size-extensivity corrections of the
BD2 approach (BD2app) and the internal-corrected B0 approach, based on
the Co coefficients, obtained with a two-determinant reference state are re-
ported in Table V (e.g. 2D-B0[D2,D2]msc or for short B0-2msc, where msc
stands for the abbreviation of the corrections introduced in Section II, i.e.
for the Molnar–Szalay correction, Eq. (19)). Moreover, the FCI energies and
the deviations with respect to the FCI values of selected DGB approaches
for various internuclear separations are listed in Table VI, here obtained
with the correlated basis sets cc-pVDZ and cc-pVTZ 32.

First of all, we regard the advanced DGB approaches of Table IV. Here, we
have the situation that, with respect to the basis sets, the results of BD2 to
BQ4 are almost equivalent. Especially, looking at the results of the BQ4 ap-
proach, we cover almost the values of the FCI calculation, which also holds
for the experimental results. Thus, the missing FCI results of the cc-pVQZ
basis set should be close to the results of the BQ4 approach.

Next, considering the B0 approach – also with regard to the MP2 results –
we obtain a satisfying agreement with the experimental values. However,
the results of ωe and ωexe unfortunately deteriorate with increasing number
of basis functions in contrast to the MP2 results. Here, the MP2 yields a
slightly better behavior in the range of the equilibrium geometry but with
the addition that the MP2 method leads to an unstable PEC in the dissocia-
tion range of the geometry, as shown in Fig. 1 for the results obtained with
the cc-pVTZ basis set. Besides the B0 and MP2 PECs, Fig. 1 pictures also two
further approaches of Table IV, i.e. B0[D2,D2] and 2D-B0[D2,D2] which are
based on the B0 method. Obviously, these internal-corrected approaches do
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TABLE IV
Experimental results and computed spectroscopic constants (in cm–1, µe in D, Re in Å) for
the LiH molecule, obtained with different approximations using different correlated basis
sets (the numbers in parentheses give the exponents in base 10)

Method Basis seta –µe De Re ωe ωexe Be αe De

B0 cc-pVDZ 5.80 17939.7 1.6123 1403.41 16.11 7.3591 0.1668 0.8094(–3)

cc-pVTZ 5.73 14970.0 1.5932 1459.44 38.12 7.5366 0.2117 0.8198(–3)

cc-pVQZ 5.84 19153.6 1.5978 1489.56 52.93 7.4927 0.1787 0.7880(–3)

MP2b cc-pVDZ 5.85 16457.4 1.6089 1403.04 19.52 7.3897 0.1794 0.8204(–3)

cc-pVTZ 5.88 18103.5 1.5893 1446.50 24.83 7.5733 0.2094 0.8323(–3)

cc-pVQZ 5.89 18455.5 1.5919 1439.63 22.47 7.5486 0.1961 0.8313(–3)

B0[D2,–] cc-pVDZ 5.78 18139.6 1.6073 1395.95 21.34 7.4049 0.1855 0.8355(–3)

cc-pVTZ 5.87 19537.9 1.5909 1436.83 26.86 7.5582 0.2157 0.8403(–3)

cc-pVQZ 5.87 19580.1 1.5948 1439.51 29.11 7.5215 0.1946 0.8293(–3)

B0[–,D2] cc-pVDZ 5.79 18135.2 1.6072 1396.21 21.22 7.4057 0.1852 0.8353(–3)

cc-pVTZ 5.87 19551.3 1.5908 1437.16 26.88 7.5589 0.2156 0.8402(–3)

cc-pVQZ 5.87 19571.9 1.5947 1440.14 29.23 7.5225 0.1946 0.8291(–3)

B0[D2,D2] cc-pVDZ 5.73 18276.2 1.6099 1382.13 20.97 7.3805 0.1896 0.8423(–3)

cc-pVTZ 5.86 19796.2 1.5927 1425.22 25.54 7.5408 0.2203 0.8457(–3)

cc-pVQZ 5.86 19884.0 1.5960 1423.88 26.83 7.5100 0.2029 0.8410(–3)

2D-B0[D2,D2] cc-pVDZ 5.75 18280.5 1.6102 1381.13 21.03 7.3782 0.1900 0.8427(–3)

cc-pVTZ 5.84 19794.9 1.5928 1424.78 26.30 7.5397 0.2206 0.8469(–3)

cc-pVQZ 5.86 19883.7 1.5961 1421.52 25.05 7.5094 0.2042 0.8411(–3)

BD2 cc-pVDZ 5.74 18298.4 1.6107 1377.63 21.77 7.3735 0.1934 0.8454(–3)

cc-pVTZ 5.82 19834.6 1.5932 1421.94 26.55 7.5363 0.2228 0.8489(–3)

cc-pVQZ 5.85 19932.2 1.5964 1415.85 24.02 7.5063 0.2072 0.8453(–3)

BQ2 cc-pVDZ 5.74 18304.8 1.6107 1377.32 21.78 7.3740 0.1932 0.8460(–3)

cc-pVTZ 5.82 19935.3 1.5937 1419.41 26.91 7.5317 0.2246 0.8505(–3)

cc-pVQZ 5.84 20122.8 1.5978 1410.53 24.62 7.4927 0.2094 0.8473(–3)

BQe2 cc-pVDZ 5.75 18305.2 1.6106 1377.31 21.79 7.3740 0.1932 0.8460(–3)

cc-pVTZ 5.82 19944.1 1.5937 1419.19 26.88 7.5314 0.2247 0.8506(–3)

cc-pVQZ 5.83 20142.3 1.5979 1409.59 24.51 7.4919 0.2100 0.8479(–3)

BQ4 cc-pVDZ 5.73 18308.0 1.6106 1377.24 21.78 7.3742 0.1932 0.8461(–3)

cc-pVTZ 5.81 19951.0 1.5936 1419.39 26.96 7.5330 0.2248 0.8510(–3)

cc-pVQZ 5.83 20142.3 1.5976 1410.39 24.65 7.4945 0.2095 0.8481(–3)

FCI cc-pVDZ 5.73 18317.9 1.6106 1377.21 21.79 7.3742 0.1932 0.8462(–3)

cc-pVTZ 5.81 20208.7 1.5936 1419.11 26.93 7.5327 0.2248 0.8512(–3)

cc-pVQZ – – – – – – – –

Exp.c 5.88 19589.4 1.5957 1405.65 23.20 7.5131 0.2132 0.8617(–3)

a From ref.32 b Obtained from an ‘unstable’ local minimum of the PEC (see text). c From
refs26,37, µe from ref.38, De from ref.39
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TABLE V
Experimental results and computed spectroscopic constants (in cm–1, µe in D, Re in Å) for
the LiH molecule, obtained with different approximations using the correlated basis set (the
numbers in parentheses give the exponents in base 10)

Basis seta Methodb,d –µe De Re ωe ωexe Be αe De

cc-pVTZ BD2dc 5.79 20174.7 1.5952 1411.30 27.62 7.5174 0.2291 0.8554(–3)

BD2rdc 5.79 20185.5 1.5954 1410.59 27.71 7.5160 0.2295 0.8558(–3)

BD2dsc 5.79 20196.9 1.5955 1409.81 27.82 7.5146 0.2300 0.8563(–3)

BD2pc 5.81 20011.2 1.5943 1416.29 27.12 7.5262 0.2261 0.8523(–3)

BD2ddc 5.81 20014.0 1.5943 1416.10 27.14 7.5259 0.2262 0.8525(–3)

BD2mc 5.82 19894.3 1.5936 1420.06 26.74 7.5329 0.2239 0.8501(–3)

BD2msc 5.82 19890.1 1.5935 1420.25 26.72 7.5333 0.2238 0.8500(–3)

B0-2dc 5.82 19788.0 1.5945 1415.81 27.09 7.5237 0.2256 0.8523(–3)

B0-2rdc 5.81 19788.0 1.5947 1415.23 27.15 7.5226 0.2259 0.8527(–3)

B0-2dsc 5.81 19787.9 1.5948 1414.59 27.22 7.5213 0.2263 0.8530(–3)

B0-2pc 5.83 19792.9 1.5937 1420.02 26.71 7.5312 0.2232 0.8498(–3)

B0-2ddc 5.83 19792.9 1.5938 1419.86 26.73 7.5309 0.2233 0.8498(–3)

B0-2mc 5.84 19795.3 1.5931 1423.19 26.43 7.5369 0.2215 0.8478(–3)

B0-2msc 5.84 19795.3 1.5931 1423.35 26.42 7.5372 0.2214 0.8478(–3)

cc-pVQZ BD2dc 5.81 20367.2 1.5993 1402.46 25.04 7.4794 0.2135 0.8523(–3)

BD2rdc 5.81 20381.6 1.5995 1401.55 25.14 7.4776 0.2140 0.8528(–3)

BD2dsc 5.81 20396.9 1.5997 1400.55 25.24 7.4755 0.2146 0.8533(–3)

BD2pc 5.83 20161.1 1.5979 1408.75 24.56 7.4921 0.2105 0.8490(–3)

BD2ddc 5.83 20164.9 1.5980 1408.50 24.59 7.4916 0.2107 0.8491(–3)

BD2mc 5.84 20011.4 1.5969 1413.49 24.20 7.5016 0.2083 0.8465(–3)

BD2msc 5.84 20007.5 1.5968 1413.68 24.18 7.5020 0.2082 0.8464(–3)

B0-2dc 5.83 19858.2 1.5986 1410.76 26.16 7.4859 0.2092 0.8447(–3)

B0-2rdc 5.83 19858.0 1.5987 1410.05 26.25 7.4844 0.2096 0.8468(–3)

B0-2dsc 5.83 19857.9 1.5989 1409.27 26.35 7.4826 0.2100 0.8472(–3)

B0-2pc 5.84 19875.3 1.5974 1415.81 25.64 7.4970 0.2068 0.8439(–3)

B0-2ddc 5.84 19875.3 1.5974 1415.62 25.66 7.4965 0.2070 0.8440(–3)

B0-2mc 5.85 19883.9 1.5965 1419.62 25.25 7.5053 0.2051 0.8420(–3)

B0-2msc 5.86 19883.9 1.5965 1419.77 25.23 7.5056 0.2050 0.8420(–3)

Exp.c 5.88 19589.4 1.5957 1405.65 23.20 7.5131 0.2132 0.8617(–3)

a From ref.32 b Obtained from an ‘unstable’ local minimum of the PEC (see text). c From
refs26,37, µe from ref.38, De from ref.39 d Here, e.g. BD2msc (B0-2msc) stands for msc-type of
correlation-energy corrections based on BD2 (2D-B0[D2,D2], see text).



improve the results of the B0 approximation substantially in the entire
range of our calculation. Here, 2D-B0[D2,D2] represents the extension of
B0[D2,D2] which is based on a reference state built up of two determinants.

Taking into account the size-extensivity corrections, mentioned above,
we obtain results which are reported in Table V for the cc-pV(T,Q)Z basis
sets. Especially for the cc-pVTZ basis set the PECs of these approaches are
also pictured in Figs 2 and 3. First of all, Table V shows the results of the
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TABLE VI
Energy deviations (in mhartree) from FCIa (in hartree) of the LiH molecule for various
internuclear separations R (in a.u.), obtained with MP2 and DBG approximations using the
correlated basis sets cc-pVDZb and cc-pVTZb

R MP2 B0 B0-1c B0-2d MSCo
e BD2 BQ2 BQe2 BQ4 FCI

cc-pVDZ

2.00 9.753 3.084 0.233 0.252 0.101 0.158 0.053 0.044 0.011 –7.945661

2.90 8.451 1.783 0.135 0.125 –0.001 0.050 0.019 0.018 0.003 –8.015452

3.02 8.455 1.730 0.142 0.128 0.001 0.048 0.019 0.017 0.003 –8.016146

3.10 8.474 1.716 0.149 0.133 0.004 0.048 0.019 0.017 0.003 –8.016066

4.00 9.596 2.960 0.431 0.359 0.178 0.055 0.021 0.018 0.004 –7.999092

5.00 13.143 7.191 1.704 1.357 1.012 0.095 0.031 0.027 0.008 –7.971952

6.00 19.920 14.369 5.114 3.600 2.803 0.201 0.057 0.050 0.016 –7.951087

10.0 51.394 52.383 25.079 3.098 –2.043 0.594 0.153 0.161 0.040 –7.933030

13.0 35.372 53.331 27.676 2.127 –1.366 0.603 0.168 0.015 0.036 –7.932761

15.0 14.548 50.635 27.536 1.635 –1.268 0.599 0.171 0.003 0.035 –7.932747

cc-pVTZ

2.00 11.101 5.094 0.818 0.869 0.620 0.660 0.210 0.167 0.057 –7.970043

2.90 10.766 4.423 0.742 0.782 0.540 0.600 0.147 0.108 0.051 –8.039580

3.02 10.824 4.395 0.754 0.791 0.546 0.605 0.145 0.105 0.051 –8.040028

3.10 10.875 4.406 0.764 0.800 0.552 0.609 0.144 0.104 0.052 –8.039783

4.00 12.132 5.569 1.129 1.117 0.800 0.759 0.159 0.107 0.066 –8.021611

5.00 14.987 8.517 2.343 2.175 1.687 1.239 0.243 0.146 0.119 –7.993568

6.00 20.096 13.892 5.608 4.774 3.936 2.441 0.440 0.249 0.242 –7.971030

10.0 51.073 50.566 30.940 10.517 4.812 9.686 1.414 0.435 0.841 –7.949413

13.0 43.533 57.302 35.124 7.924 2.766 10.157 1.501 0.043 0.840 –7.949098

15.0 28.035 56.879 35.234 6.878 2.371 10.075 1.513 0.029 0.822 –7.949084

a Obtained with GAMESS 31. b From ref.32 c Here, B0-1 stands for B0[D2,D2] (see text). d Here,
B0-2 stands for 2D-B0[D2,D2] (see text). e Here, MSCo stands for 2D-B0[D2,D2]msc (see text).



spectroscopic constants of the size-extensivity corrections based on the
BD2. Here, we also applied the size-extensivity corrections to the
2D-B0[D2,D2] approach which are represented as B0-2app in Table V. Obvi-
ously, there are no decisive differences in the results of the BD2app correc-
tions and the BD2 values of Table IV if we focus on the range about the
equilibrium geometry. Of course, LiH is a small system and the basis sets
are large enough to cover the essential correlation contribution in this area
to obtain results close to the experimental results. This also holds for the
B0-2app corrections. However, if we take a look at the dissociation range
from 6 to 15 a.u., as shown in Fig. 2 for the BD2app approaches (given as
APP) and Fig. 3 for the B0-2app approaches (given as APPo), one can see the
essentially different behavior of these approaches. If we consider the PECs
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FIG. 1
Potential energy curves for the LiH ground state, obtained with the MP2, B0, B0[D2,D2],
2D-B0[D2,D2], BD2, and FCI approximations and the cc-pVTZ basis set



of the size-extensivity corrections of BD2 in Fig. 2, all corrections – except
MSC – show instable performances in the dissociation range. This kind of
performance deteriorates in the following oder (MSC <) MC < PC < DC <
DDC < RDC < DSC. Here, the BD2msc (MSC) outperforms all of the other
approaches compared to the FCI-PEC. However, if we examine the results of
the 2D-B0[D2,D2]-based corrections in Fig. 3, we obtain a similar behavior
(MCo < MSCo < PCo < DCo < DDCo < RDCo < DSCo) but even less worse than
in the former case. Moreover, the Molnar–Szalay correction – be it applied
to the BD2 approach or even to the 2D-B0[D2,D2] approach – leads to satis-
fying results over the entire range of the internuclear separation. For com-
pleteness, Table VI shows the FCI energies and the energy deviations for B0
approaches we are interested in, as well as selected approaches for compari-
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FIG. 2
Potential energy curves for the LiH ground state, obtained with the 2D-B0[D2,D2], BD2, the
BD2-based size-extensivity approximations, as well as the FCI method and the cc-pVTZ basis
set



son of various internuclear separations over the considered range obtained
with the cc-pV(D,T)Z basis sets. Here, we can see – starting from B0 to MSCo
– the improvements of the absolute energy values displayed in the decreas-
ing of the deviations. Especially, if we compare the results of the MP2 ap-
proach and the B0 approach. This also holds if we consider the results of
MSCo obtained with the cc-pVTZ basis set in comparison with the BD2 ap-
proach.

Of course, besides the spectroscopic constants considered – in most cases
representing the behavior of the internuclear separation range above the
equilibrium geometry – we also have to take a look at the shape of the PEC
at the intermediate range of internuclear separation. Here, one can consider
the vibrational energy levels compared with the experimental results. These
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FIG. 3
Potential energy curves for the LiH ground state, obtained with the 2D-B0[D2,D2], BD2, the
2D-B0[D2,D2]-based size-extensivity approximations, as well as the FCI method and the
cc-pVTZ basis set



results based on the cc-pVTZ basis set for LiH are shown in Table VII. As in
Table VI, we list the deviation with respect to the experimental results of
the B0, B0[D2,D2] (cited as B0-1), 2D-B0[D2,D2] (cited as B0-2), and the cor-
rected approach 2D-B0[D2,D2]msc (cited as MCSo) compared with the MP2
approach and various higher-level DGB and CC approaches as well. At first
sight we obtain for B0 and MP2 similar results where the MP2 values are
based only on the local minimum of the PEC. Here, as before, improve-
ments of B0 can be seen if we compare the approximation in the order B0,
B0-1, B0-2, and MSCo. When assessing the B0-based approaches: B0-1, B0-2,
and MSCo, the substantial improvement is obtained with the incorporation
of the internal corrections based on the BD2 approach. On the other hand,
the influence of the second determinant in the reference state, B0-2, and
even the size-extensivity correction, MSCo, lead to small corrections
whereas they are more important in the range of dissociation (cf. Fig. 1 and
Fig. 3). For low-lying levels ν, the deviation errors with regard to BD2 are
about 70% for B0 and MP2, and have been reduced to about 30% in the
case of B0-1 and about 15% for MSCo. If we take also into account the mid-
dle part of the energy levels, the errors are increasing from about 70 to 76%
for B0, from about 30 to 50% for B0-1, and from about 15 to 37% in the
case of MSCo. Then for higher-lying levels, the errors are still increasing for
B0-1 up to 55% whereas the errors of the deviations are decreasing to about
70% in the case of B0 but about 30% for MSCo. It should be stated that the
absolute errors of B0 (BD2) with regard to the experimental results are in-
creasing from about 4% (1%) up to about 12% (3.5%) by increasing ν. This
shows that the B0 approximations employed in Table VII – as mentioned –
are not feasible approaches when chemical accuracy is required. However,
with respect to computational demanding these approaches may be suit-
able to obtain semiquantitative results for large systems. Here, for instance,
the relative computation time (without SCF calculation and four-index
transformation) with respect to that required by the BD2 approximation (Tr =
1.0) yields Tr ≈ 0.15 for B0 and yields Tr ≈ 0.37 for B0-1 by including the in-
ternal corrections, which is still inexpensive. That means one can save con-
siderably computational time, i.e. about 80% in the case of B0 by increasing
the error of only about 12%.

In order to complete these considerations, Table VIII shows the funda-
mental (ν → ν + 1) vibrational transition energies of LiH, here obtained
with the cc-pVQZ basis set to achieve an improvement with respect to the
experimental data. As in the case of the vibrational energy levels of Table VII,
we are reporting the deviation of MP2 and the suitable B0 approximation as
well as of selected DGB, CC, and CI approaches for the assessment of the
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accuracy of the cruder B0-based approximations. As before, the results of
the B0-based approaches follow a similar performance, a substantial im-
provement is achieved with the incorporation of the internal correction,
namely B0-1, and further (slight) improvements are obtained with a
two-determinant reference state (B0-2) and the B0-based size-extensivity
correction (MSCo). The same holds also for the transition frequencies for se-
lected lines in the P and R branches of various vibrational bands reported in
Table IX. Here, the computational efficiency of the B0 and B0-1 approxima-
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TABLE VIII
Experimentally determined fundamental (ν → ν + 1) vibrational transition energiesa (Exp.)
of LiH and the deviations of the computed values from the experimental ones as obtained
with various methods and the cc-pVQZ basis setb. All values are in cm–1

ν Exp.a MP2c B0 B0-1d B0-2d MSCo
d BD2 BQ2 BQe2 CCSDe CCSDf CIg CIh

0 1359.7 39.1 45.2 14.3 13.8 11.7 9.3 2.8 2.0 2.0 1.8 –6.8 –14.9

1 1314.9 39.4 33.5 14.5 13.8 11.4 9.1 1.5 0.8 0.8 0.5 –5.9 –14.6

2 1270.9 41.7 36.4 17.1 15.5 12.9 9.9 1.3 0.5 0.5 0.2 –4.4 –14.2

3 1227.8 45.4 39.1 19.6 18.2 15.4 11.6 1.8 0.8 0.8 0.5 –4.2 –12.8

4 1185.4 50.3 42.9 23.1 21.4 18.3 13.8 2.7 1.5 1.5 1.2 –5.3 –10.8

5 1143.8 55.7 53.4 27.5 25.0 21.6 16.2 3.6 2.2 2.2 1.9 –8.2 –8.8

6 1102.6 62.0 65.6 32.6 29.2 25.5 19.0 4.6 2.9 2.9 2.5 –11.2 –7.2

7 1061.8 68.9 75.9 37.5 33.8 29.6 22.1 5.6 3.5 3.5 3.0 –10.8 –6.3

8 1021.2 76.4 82.8 42.4 38.7 34.2 25.6 6.4 4.0 4.0 3.4 –11.6 –6.0

9 980.5 84.8 88.6 48.3 44.4 39.4 29.7 7.3 4.5 4.5 3.7 –10.6 –5.7

10 939.6 94.0 95.4 56.3 51.0 45.4 34.5 8.2 4.8 4.8 3.8 –10.2 –5.4

11 898.1 104.6 105.0 66.6 58.7 52.4 40.4 9.2 5.1 5.0 3.8 –9.8 –5.1

12 855.5 116.8 117.3 78.8 68.0 60.9 47.5 10.4 5.3 5.2 3.7 –10.0 –4.5

13 811.2 131.2 132.1 92.3 79.1 71.1 56.5 11.7 5.4 5.4 3.3 –11.2 –3.7

14 764.4 148.6 149.6 107.9 92.7 83.8 67.8 13.4 5.5 5.5 2.7 –12.6 –2.8

15 714.2 169.8 170.7 127.1 109.6 99.3 82.4 15.4 5.5 5.5 1.7 –14.2 –1.9

16 659.3 196.0 197.5 152.1 130.8 118.5 101.0 17.8 5.4 5.5 0.0 –16.2 –1.1

17 597.9 229.1 231.9 185.0 158.1 143.1 125.4 21.3 5.5 5.5 –2.4 –19.4 –0.4

18 527.9 271.0 276.6 227.5 193.3 175.0 157.3 26.1 5.8 5.8 –6.0 –24.8 0.1

19 446.6 324.4 334.5 281.9 237.9 214.7 199.0 32.4 6.8 6.9 –11.4 –31.4 0.3

20 351.0 392.1 408.3 350.4 291.7 258.4 253.2 40.8 9.1 9.3 –20.2 –39.0 –0.6

21 237.7 477.6 499.1 435.8 352.3 – 322.8 53.6 – 15.4 –36.1 –48.2 –2.0

a From ref.40 b From ref.32 c Obtained from an ‘unstable’ local minimum of the PEC (see
text). d See Table VI. e From ref.41 f CCSD-[4R] from ref.41 g CI/STF From ref.42 h From ref.43
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TABLE IX
The deviations of the transition frequencies of various DGB approximations and 4R-RMR
CCSDa (RMR), obtained with the cc-pVQZ basis setsb, from the experimental valuesc (Exp.)
for selected lines in the P and R branches of various vibrational bands of LiH. In each
branch, the observed lines associated with the smallest and the largest rotational quantum
number J′′ were chosen. All values are in cm–1

Band Line Exp.c MP2d B0 B0-1e B0-2e MSCo
e BD2 BQ2 BQe2 RMRa

(1,0) P(28) 858.1 44.3 48.0 19.8 18.5 16.0 12.7 4.6 3.7 3.5
P(1) 1344.9 35.9 45.2 14.3 13.8 11.7 9.3 2.8 2.0 1.9
R(0) 1374.1 36.1 45.2 14.3 13.8 11.7 9.3 2.8 2.0 1.8
R(22) 1550.1 49.0 54.2 20.5 19.2 16.4 12.9 3.8 2.8 2.5

(2,1) P(27) 844.9 46.5 49.0 21.3 19.8 17.1 13.1 4.1 3.2 2.9
P(1) 1300.5 38.5 33.5 14.5 13.8 11.4 9.1 1.6 0.8 0.6
R(0) 1328.8 38.9 33.7 14.6 13.9 11.5 9.2 1.6 0.8 0.6
R(17) 1485.9 47.8 44.1 19.4 18.0 15.2 11.8 2.3 1.4 1.1

(3,2) P(23) 885.7 47.4 44.3 21.1 20.2 17.4 13.3 3.7 2.7 2.4
P(1) 1256.9 42.1 36.3 17.0 15.5 12.9 9.9 1.4 0.5 0.3
R(0) 1284.5 42.3 36.5 17.1 15.5 13.0 9.9 1.3 0.4 0.2
R(18) 1439.4 53.5 47.8 22.5 21.3 18.1 13.8 2.7 1.5 1.2

(4,3) P(21) 888.2 50.2 43.4 23.8 21.9 18.9 14.4 3.8 2.7 2.4
P(2) 1200.3 46.1 38.8 19.5 18.1 15.3 11.5 1.8 0.9 0.6
R(1) 1253.7 47.0 39.5 19.8 18.4 15.5 11.7 1.8 0.8 0.5
R(14) 1373.1 54.9 45.5 24.5 22.5 19.2 14.6 2.8 1.7 1.3

(5,4) P(15) 957.1 52.0 45.9 25.0 22.8 19.7 14.9 3.6 2.4 2.1
P(3) 1144.9 50.6 42.4 22.8 21.1 18.1 13.6 2.6 1.5 1.2
R(4) 1244.9 53.1 44.4 24.0 22.2 19.0 14.3 2.8 1.6 1.2
R(8) 1283.8 55.5 46.8 25.5 23.5 20.1 15.2 3.0 1.8 1.5

(2,0) P(25) 2109.9 92.5 99.1 40.8 38.1 32.8 25.5 8.2 6.3 5.8
P(1) 2659.8 74.6 78.7 28.8 27.5 23.2 18.3 4.4 2.8 2.4
R(1) 2701.6 75.1 79.1 29.0 27.8 23.4 18.5 4.4 2.8 2.5
R(13) 2785.8 84.1 89.5 34.0 32.1 27.2 21.5 5.6 3.9 3.5

(3,1) P(22) 2116.9 94.8 91.0 41.3 38.8 33.3 25.6 6.7 4.7 4.2
P(1) 2571.4 80.7 69.9 31.5 29.3 24.4 19.0 2.9 1.3 0.9
R(0) 2599.3 81.1 70.1 31.7 29.4 24.5 19.1 2.9 1.3 0.9
R(11) 2689.0 88.5 78.6 35.4 33.1 27.8 21.6 3.8 2.0 1.5

(4,2) P(19) 2118.4 98.9 87.1 44.1 41.3 35.4 26.9 6.4 4.3 3.7
P(3) 2454.5 88.3 75.4 36.6 33.6 28.3 21.5 3.2 1.3 0.8
R(1) 2524.2 89.2 75.9 36.9 33.9 28.5 21.7 3.1 1.3 0.7
R(11) 2598.1 97.0 83.1 41.2 38.1 32.3 24.5 4.2 2.2 1.6

(5,3) P(16) 2114.2 104.5 90.3 49.1 44.9 38.6 29.2 6.8 4.4 3.8
P(2) 2385.4 97.3 81.6 42.5 39.4 33.5 25.3 4.5 2.3 1.7
R(5) 2477.1 100.8 84.5 44.4 41.1 35.0 26.4 4.8 2.6 2.0
R(13) 2511.6 109.9 93.7 50.6 46.4 39.8 30.0 6.3 3.8 3.2

(6,4) P(11) 2145.4 109.9 101.4 53.3 48.6 42.0 31.6 7.3 4.6 4.0
P(5) 2255.9 107.4 96.6 50.8 46.6 40.1 30.1 6.4 3.9 3.3

a From ref.41 b From ref.32 c From ref.44 d Obtained from an ‘unstable’ local minimum of the
PEC (see text). e See Table VI.



tions using the cc-pVQZ basis set with respect to that required by the BD2
approximation (Tr = 1.0) leads to similar results: Tr ≈ 0.12 for B0 and Tr ≈ 0.25
for B0-1.

C. Application to the BeH Molecule

Next, we apply the B0 approximations to the simple open-shell system, the
ground state X2Σ+ of the BeH molecule, which represents a natural exten-
sion of the preceding molecule LiH. Hence, we have to use a restricted
open-shell Hartree–Fock (ROHF) wave function as a reference and we also
employ the cc-pV(D,T,Q)Z basis sets. In this case it is well known (cf. f) of
ref.11 and refs45,46) that the ROHF solution for BeH is plagued with doublet
instabilities which is caused by a qualitative change in the bounding nature
when stretching the BeH bound from equilibrium geometry to the dissocia-
tion-limit: at the equilibrium geometry a 1s electron participates in the
σ-bond (closed-shell), whereas in the case of separated atoms we have the
closed-shell Be atom and open-shell electron on the H atom. Therefore, in
order to obtain a smooth PEC, we start the calculation at the stretched ge-
ometry (9 a.u.), based on the so-called outer ROHF solution11,46.

Here, it should be stated that for BeH only one (ROHF) determinant refer-
ence function (1D SR) is used. Now, we consider first the 1D SR results of
the spectroscopic constants for MP2 and various DGB approaches given in
Table X. The results of the advanced approximations, BD2 to FCI (if avail-
able), are given for comparison with the B0-based approaches. As these re-
sults show, all of these “advanced” methods lead to similar results for each
of the basis set employed. Comparing these values with the experimental
results shown in Table X we obtain a relatively good agreement if we are fo-
cusing on the cc-pV(D,Q)Z basis sets. The cc-pVTZ basis set shows slightly
deteriorated values for anharmonic parts of the spectroscopic constants
compared with the behavior of the cc-pV(D,Q)Z bases. Here, the results of
BQ4 are close to the FCI results in the case of the cc-pVDZ basis set, which
indicate, as shown earlier for LiH, that the FCI results for the cc-pVTZ basis
set should be similar to the values of BQ4. Next, we proceed with the B0
and MP2 results of Table X. The approximated values of the spectroscopic
constants at the equilibrium geometry Re and ωe obtained with cc-pVDZ are
in good agreement with the FCI values, which holds also for the Be and De
constants. However, if we consider the anharmonic constants, here the
MP2 values suite better to the FCI and experimental results than does B0.
For the dissociation energy De, B0 gives the closer estimate with respect to
the FCI result. If we employ the cc-pVTZ basis set, the data of the B0 ap-
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TABLE X
Experimental results and computed spectroscopic constants (in cm–1, µe in D, Re in Å) for
the BeH molecule, obtained with different approximations using different correlated basis
sets (the numbers in parentheses give the exponents in base 10)

Method Basis seta –µe De Re ωe ωexe Be αe De

B0 cc-pVDZ 0.209 15112.7 1.3598 2051.66 23.02 10.0570 0.1885 0.9711(–3)

cc-pVTZ 0.249 17106.7 1.3270 2248.90 154.87 10.5614 0.4143 1.0272(–3)

cc-pVQZ 0.228 17349.7 1.3364 2035.72 0.73 10.4123 0.3509 1.0497(–3)

MP2 cc-pVDZ 0.203 17976.5 1.3531 2091.21 31.97 10.1583 0.2657 0.9588(–3)

cc-pVTZ 0.223 19310.8 1.3274 2113.76 37.78 10.5548 0.3406 1.0521(–3)

cc-pVQZ 0.247 19422.1 1.3361 2112.31 34.61 10.4178 0.2835 1.0145(–3)

B0[D2,–] cc-pVDZ 0.203 16264.5 1.3525 2081.17 29.69 10.1667 0.2633 0.9693(–3)

cc-pVTZ 0.227 18114.8 1.3264 2133.95 58.34 10.5713 0.3547 1.0564(–3)

cc-pVQZ 0.242 18439.0 1.3353 2109.64 34.10 10.4304 0.2908 1.0201(–3)

B0[–,D2] cc-pVDZ 0.203 16320.3 1.3524 2081.80 29.70 10.1680 0.2636 0.9690(–3)

cc-pVTZ 0.228 18176.5 1.3263 2134.11 57.88 10.5722 0.3538 1.0562(–3)

cc-pVQZ 0.242 18494.4 1.3352 2109.57 33.58 10.4320 0.2908 1.0202(–3)

B0[D2,D2] cc-pVDZ 0.161 15841.8 1.3548 2063.59 32.59 10.1327 0.2793 0.9756(–3)

cc-pVTZ 0.212 17579.0 1.3290 2093.24 43.77 10.5285 0.3573 1.0693(–3)

cc-pVQZ 0.266 17930.9 1.3378 2097.25 38.32 10.3914 0.2940 1.0237(–3)

MSCo
b cc-pVDZ 0.198 15496.8 1.3553 2059.01 33.09 10.1242 0.2813 0.9774(–3)

cc-pVTZ 0.209 17637.9 1.3297 2087.62 44.63 10.5184 0.3610 1.0721(–3)

cc-pVQZ 0.228 18339.6 1.3387 2090.08 38.86 10.3768 0.2973 1.0263(–3)

BD2 cc-pVDZ 0.185 15854.2 1.3555 2059.01 35.83 10.1211 0.2850 0.9780(–3)

cc-pVTZ 0.211 17531.1 1.3298 2079.67 38.96 10.5170 0.3588 1.0740(–3)

cc-pVQZ 0.237 17877.4 1.3384 2089.35 36.78 10.3817 0.2950 1.0265(–3)

BQ2 cc-pVDZ 0.185 15849.9 1.3557 2057.84 35.99 10.1190 0.2855 0.9785(–3)

cc-pVTZ 0.209 17410.4 1.3301 2075.26 39.96 10.5115 0.3634 1.0770(–3)

cc-pVQZ 0.234 17582.8 1.3398 2075.81 36.15 10.3598 0.3012 1.0315(–3)

BQe2 cc-pVDZ 0.184 15854.7 1.3558 2056.92 36.27 10.1169 0.2859 0.9788(–3)

cc-pVTZ 0.208 17405.8 1.3302 2073.75 39.94 10.5095 0.3639 1.0778(–3)

cc-pVQZ 0.233 17569.0 1.3401 2076.72 38.12 10.3555 0.3008 1.0310(–3)

BQ4 cc-pVDZ 0.178 15979.1 1.3575 2044.70 36.71 10.0917 0.2889 0.9828(–3)

cc-pVTZ 0.205 17526.8 1.3315 2066.27 43.02 10.4903 0.3702 1.0817(–3)

cc-pVQZ – – – – – – – –

FCI cc-pVDZ 0.178 15984.3 1.3575 2044.77 37.33 10.0911 0.2909 0.9828(–3)

cc-pVTZ – – – – – – – –

cc-pVQZ – – – – – – – –

Exp.c 18550.6 1.3426 2060.78 36.31 10.3164 0.3030 1.0221(–3)

a From ref.32 b From refs26,37, De from ref.39 c Here, MSCo stands for B0[D2,D2]msc (see text).



proach unfortunately deteriorate except for De (and µe, here, with respect to
BQe2). This also holds for the MP2 results but not so extremely as in the
case of the B0 approach. This can be slightly remedied by augmenting the
basis set to cc-pVQZ. Nevertheless, the results are still worser in the case of
the anharmonic constants ωexe and αe for B0 than for MP2 in contrast to
the results of De (and µe with respect to BQe2). The deteriorating behavior
of the results of the spectroscopic constants, especially for ωexe and αe, us-
ing the cc-pVTZ basis set, can also be seen in the results of the advanced
DGB approaches.

In order to improve or remedy the behavior of the B0 approach by low
computational cost, Table X presents also the results of the internal--
corrected B0 approximations, namely B0[D2,–], B0[–,D2], and B0[D2,D2] as well
as the B0[D2,D2]-based size-extensivity correction of Molnar and Szalay
(MSCo, cf. Eq. (19)). In Fig. 4, we present the ground state X2Σ+ PECs of the
B0 and B0[D2,D2] approximations and also those obtained by the MP2 and
FCI methods. As in the case of LiH, we observe at least in this case of a
small molecule that the results (given in Table X) of the internal-corrected
methods – be the correction applied during the iteration of B0, namely
B0[D2,–], or at the end, namely B0[–,D2] – are quite similar (but improved).
Thus, we can expect a further (slight) improvement if we apply the
B0[D2,D2] approximation to the ground state of BeH as shown in Table X.
That also holds if we use in addition the Molnar and Szalay correction, i.e.
MSCo. The percentage of the relative deviation of the latter approach (ob-
tained with the cc-pVQZ basis set) by considering the experimental values
is below 2% except for the anharmonic constant ωexe (about 7%) and the
dipole moment µe (about 2.1% with respect to the BQe2 results). The rela-
tive computational time of the B0 and B0[D2,D2] approximations using the
cc-pVQZ basis set with respect to that required by the BD2 approximation
(Tr = 1.0) leads here to similar results as in the case of LiH: Tr ≈ 0.10 for B0
and Tr ≈ 0.25 for B0[D2,D2].

Following the LiH presentation, Table XI and Table XII show the results
of the vibrational energy levels (first part), the fundamental vibrational
transition energies (second part), and transition frequencies for selected
lines in the P and R branches of vibrational bands (last part). In the case of
Table XI, these data are obtained with the cc-pVDZ basis set whereas Table XII
presents the values generated with the cc-pVQZ basis set. As before, we
show the deviation results of the B0-based approximations (B0, B0[D2,D2],
i.e. B0-1, and MSCo), of the MP2 and advanced DGB approaches (BD2, BQ2,
and BQe2) with respect to the available FCI values also given in Table XI.
First of all we recognize that the results of the B0 method lead to better
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agreement with the FCI values than does MP2. Moreover, we have the same
behavior of the B0-based methods as in the case of LiH: B0, B0-1, and
MSCo. The substantial improvement is obtained with the incorporation of
the internal corrections based on the BD2 approach (B0-1). In addition
MSCo leads to small corrections for the low-lying vibrational energy levels ν
and with increasing levels ν we obtain better correction. Similar behavior
can be found in the case of the fundamental vibrational transition energies.
The third part of data given in Table XI, the transition frequencies show
also substantial improvement with the incorporation of the internal correc-
tions based on the BD2 approach (B0-1) and, moreover, further (smaller)
corrections can also be obtained with the MSCo approach. When consider-
ing the results obtained with the cc-pVQZ basis set presented in Table XII,
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FIG. 4
Potential energy curves for the BeH ground state, obtained with the MP2, B0, B0[D2,D2], and
FCI approximations and the cc-pVDZ basis set
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TABLE XI
First part, FCI vibrational energy levelsa of BeH and the differences between MP2, various
DGB computed values and the FCI results. Second part, the fundamental (ν → ν + 1) vibra-
tional transition energies (FCI) of BeH and the deviations of the computed values from FCI.
Third part, the deviations of the transition frequencies of the approximations from the FCI
values for selected lines in the P and R branches of various vibrational bands of BeH. All val-
ues are in cm–1 and obtained with the cc-pVDZ basisb

ν MP2 B0 B0-1c MSCo
d BD2 BQ2 BQe2 FCIa

0 14.0 11.5 5.1 4.0 3.2 2.9 2.6 995.1

1 71.9 45.8 32.5 25.8 20.7 18.8 17.1 2964.8

2 143.4 105.0 68.4 54.6 42.1 38.3 34.5 4857.8

3 231.6 185.3 114.2 91.5 68.8 62.2 55.5 6670.7

4 341.1 282.3 173.7 139.4 102.6 92.1 81.2 8398.5

5 477.5 400.1 251.3 201.5 145.2 129.1 111.9 10033.6

6 646.2 541.5 349.9 275.0 191.3 166.1 140.9 11564.4

7 840.9 675.8 449.4 318.3 199.6 159.6 133.6 12973.0

8 1051.7 698.2 474.8 266.7 138.5 92.5 79.2 14229.1

9 1355.7 – 375.2 168.7 103.8 68.6 57.1 15277.6

10 1674.4 – – – – – – 15981.1

ν MP2 B0 B0-1c MSCo
d BD2 BQ2 BQe2 FCIa

0 57.9 34.3 27.5 21.8 17.5 16.0 14.5 1969.7

1 71.5 59.2 35.8 28.8 21.4 19.4 17.4 1893.0

2 88.2 80.3 45.9 36.9 26.7 24.0 21.0 1812.9

3 109.4 97.0 59.4 47.9 33.8 29.9 25.6 1727.8

4 136.5 117.8 77.6 62.1 42.7 37.0 30.7 1635.1

5 168.7 141.4 98.6 73.4 46.1 36.9 29.0 1530.9

6 194.7 134.3 99.5 43.3 8.3 –6.5 –7.3 1408.6

7 210.8 22.4 25.4 –51.6 –61.2 –67.1 –54.3 1256.2

8 303.9 – –99.5 –98.0 –34.6 –23.9 –22.1 1049.0

9 318.7 – – – – – – 703.5



we have a similar situation for B0 and MP2 as in the case of the cc-pVDZ
basis set. However, the B0 approach leads to much better results compared
with the MP2 results by using BQe2 as reference method. Unfortunately, if
we apply the internal correction to B0, namely B0-1, here we do not obtain
a significant refinement of the data. That holds also for the MSCo approxi-
mation. Here, it seems that these relatively good results of the B0 approach
and the ill-conditioned B0-1 and MSCo approaches are an expression of the
PEC and the spectroscopic constant, respectively, given in Table X, espe-
cially considering the anharmonic part ωexe.
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TABLE XI
(Continued)

Line MP2 B0 B0-1c MSCo
d BD2 BQ2 BQe2 FCIa

(1,0)

R(2) 58.81 35.29 27.96 22.19 17.78 16.23 14.76 2025.71

R(1) 58.45 34.83 27.76 22.03 17.66 16.12 14.66 2007.69

R(0) 58.15 34.51 27.59 21.89 17.55 16.03 14.57 1989.03

P(1) 57.75 34.32 27.36 21.71 17.40 15.89 14.44 1949.85

P(2) 57.66 34.43 27.30 21.66 17.35 15.84 14.40 1929.39

(2,1)

R(2) 72.66 60.17 36.52 29.34 21.84 19.80 17.71 1947.08

R(1) 72.17 59.74 36.25 29.12 21.68 19.66 17.58 1929.71

R(0) 71.77 59.41 36.03 28.94 21.55 19.53 17.47 1911.67

P(1) 71.22 58.98 35.72 28.69 21.35 19.35 17.31 1873.72

P(2) 71.08 58.89 35.63 28.62 21.29 19.30 17.26 1853.84

(2,0)

R(2) 130.78 94.94 64.09 51.21 39.36 35.80 32.25 3915.03

R(1) 130.15 94.23 63.74 50.93 39.17 35.62 32.09 3898.85

R(0) 129.68 93.75 63.48 50.72 39.01 35.48 31.97 3881.42

P(1) 129.21 93.47 63.21 50.50 38.84 35.32 31.83 3842.86

P(2) 129.20 93.67 63.19 50.49 38.81 35.30 31.80 3821.79

a Obtained with GAMESS 31. b From ref.32. c Here, B0-1 stands for B0[D2,D2] (see text). d Here,
MSCo stands for B0[D2,D2]msc (see text).



Collect. Czech. Chem. Commun. (Vol. 70) (2005)

1306 Meissner:

TABLE XII
First part, BQe2 vibrational energy levels of BeH and the differences between MP2, other
DGB computed values and the BQe2 results. Second part, the fundamental (ν → ν + 1) vibra-
tional transition energies of BeH and the deviations from BQe2. Third part, the deviations of
the transition frequencies of the approximations from the BQe2 values for selected lines in
the P and R branches of various vibrational bands of BeH. All values are in cm–1 and ob-
tained with the cc-pVQZ basisa

ν MP2 B0 B0-1b MSCo
c BD2 BQ2 BQe2

0 26.0 11.3 13.8 8.4 9.9 1.3 1011.9

1 68.7 17.3 36.1 22.2 25.5 2.9 3013.4

2 119.3 39.3 63.4 39.5 44.8 5.7 4940.7

3 179.0 73.3 98.7 63.0 68.9 9.2 6793.4

4 250.2 144.4 144.0 94.8 99.2 14.8 8569.6

5 336.6 213.7 199.6 138.8 135.9 22.3 10265.5

6 447.8 293.9 259.0 214.2 168.0 33.7 11875.2

7 611.2 348.9 307.6 364.2 176.5 51.1 13388.6

8 865.8 415.2 412.1 592.4 237.3 79.4 14788.6

9 1189.1 601.4 629.7 638.3 378.5 123.2 16029.7

10 1463.3 503.0 595.6 563.5 357.8 105.1 16940.8

11 1727.5 – – – – – 17485.2

ν MP2 B0 B0-1b MSCo
c BD2 BQ2 BQe2

0 42.7 5.9 22.3 13.8 15.6 1.7 2001.5

1 50.6 22.1 27.3 17.3 19.3 2.7 1927.3

2 59.8 34.0 35.2 23.5 24.1 3.6 1852.7

3 71.2 71.1 45.3 31.8 30.3 5.6 1776.2

4 86.3 69.3 55.7 44.0 36.7 7.5 1696.0

5 111.2 80.1 59.3 75.4 32.1 11.4 1609.6

6 163.4 55.1 48.6 149.9 8.5 17.4 1513.4

7 254.6 66.3 104.5 228.2 60.8 28.3 1399.9

8 323.4 186.2 217.6 46.0 141.2 43.7 1241.1

9 274.1 –98.4 –34.0 –74.8 –20.8 –18.0 911.1

10 264.2 – – – – –61.8 544.4



D. Application to the Phenolate Anion

As an initial assessment of the B0 approach in the case of larger molecular
systems, we here calculate the energies of the ground and excited states of
the phenolate anion. The geometry of the isolated anion is taken from
ref.12 where the optimized geometry has been determined using restricted
Hartree–Fock (RHF) calculations, the standard 4-31G basis set31, and Cs
symmetry. Therefore, all the calculations are based on the 4-31G basis set.
In order to asses the B0 approach we compare the B0 results with other cal-
culations of ref.12, such as the first, second, and third order of the effective
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TABLE XII
(Continued)

Line MP2 B0 B0-1b MSCo
c BD2 BQ2 BQe2

(1,0)

R(2) 43.42 5.97 22.64 14.04 15.87 1.69 2059.01

R(1) 43.14 5.98 22.49 13.95 15.76 1.67 2040.50

R(0) 42.91 5.97 22.36 13.87 15.67 1.66 2021.33

P(1) 42.58 5.85 22.18 13.76 15.53 1.64 1981.13

P(2) 42.48 5.75 22.12 13.73 15.49 1.64 1960.14

(2,1)

R(2) 51.42 22.43 27.85 17.67 19.65 2.77 1982.94

R(1) 51.08 22.26 27.64 17.52 19.50 2.75 1965.04

R(0) 50.79 22.13 27.47 17.42 19.38 2.73 1946.49

P(1) 50.37 22.00 27.23 17.27 19.20 2.71 1907.50

P(2) 50.23 22.00 27.16 17.23 19.15 2.70 1887.12

(2,0)

R(2) 94.28 28.27 50.19 31.53 35.29 4.43 3982.66

R(1) 93.85 28.16 49.93 31.35 35.11 4.41 3965.98

R(0) 93.52 28.06 49.73 31.22 34.97 4.39 3948.03

P(1) 93.14 27.91 49.51 31.09 34.82 4.37 3908.43

P(2) 93.09 27.85 49.49 31.08 34.80 4.36 3886.84

a From ref.32 b Here, B0-1 stands for B0[D2,D2] (see text). c Here, MSCo stands for
B0[D2,D2]msc (see text).



valence shell Hamiltonian (Hv) method by using improved virtual orbitals
(IVOs), the equation-of-motion coupled-cluster method with restriction to
all single and double excitations (EOM-CCSD), the state-average complete
active space SCF (sa-CASSCF) method and its second-oder correlation cor-
rection extension (sa-CASMP2), and the single-excitation configuration in-
teraction (CIS) approach (for details of these methods we refer to ref.12 and
references therein). Moreover, a full configuration interaction calculation31

has been performed within a selected active space (SAS-FCI) containing
eight electrons and 12 orbitals: four double occupied orbitals (2π,3π,21σ,4π)
and eight unoccupied orbitals in the ground state configuration:

[(2π)2 (3π)2 (21σ)2 (4π)2] {(5π)(6π)(22σ) … (26σ)(7π)} .

The results of the SAS-FCI calculation have been used to classify the excited
states and therefore the dominant determinants of the state functions
which are then used in our calculation: a single reference determinant in
the case of triplet and quintet states and a two-determinant reference func-
tion in the case of singlet states. The results of the energy calculations are
presented in Table XIII. Here, Table XIII shows the excitation energies (in
eV) of the first fourteen singlet (Si) and triplet (Ti) states, and one quintet
(Q1) state of the isolated phenolate anion obtained with various calculation
methods mentioned above. The first column shows the order of the single,
triplet, and quintet states obtained with the SAS-FCI computation (see third
column of Table XIII). The second column presents the excitation scheme
of the dominant configuration used with respect to the ground state config-
uration.

Here, it should be stressed that the Hv calculation is performed within a
valence reference space containing the first seven π-orbitals (1π, …, 7π).
Then the effective valence shell Hamiltonian is diagonalized solely within
this reference space to yield all reference space states energies. It means that
only excitations of π → πtype are considered in ref.12 (see Table 2 therein)
and presented in Table XIII. Although the assignment of the states of the Hv

calculation, shown in Table 2 of ref.12, to the states of the SAS-FCI calcula-
tion are not unambiguously for all states, we arrange the ambiguous states,
here S8, S11, and S13, by the order of the excitation energies of the B0 re-
sults.

Comparing the SAS-FCI and the B0 excitation energies we can find good
correspondence in the order of the states with the exceptions of the singlet
states S6, S8, S11, and S13. For the S11 and S13 states B0 leads to lower excita-
tion energies than does SAS-FCI (∆(S11) ≈ –1.152 eV, ∆(S13) ≈ –0.721 eV), in
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contrast to the S8 state where the B0 calculation delivers a much higher ex-
citation energy (∆(S8) = 1.501 eV). Differences of the other states vary from
–0.567 to 0.267 eV. To determine the order of the singlet states S6, S8, S11,
and S13 we compare the B0 results with the excitation energies of the Hv cal-
culations. Here the first order results, H v

1st , of the S11 and S13 singlet states
agree with the B0 results within 0.13 eV whereas the S6 and S8 states differ
by 0.458 and 0.942 eV, respectively. With respect to the Hv calculation we
obtain for B0 an average deviation of 0.227 eV in the case of the first order,
of about 0.340 eV in the case of the second order, and finally 0.572 eV in
the case of the third oder of Hv if we exclude the double excited singlet
state S8. For that case and with respect to the EOM-CCSD results the differ-
ences for the B0 approach vary now from 0.146 eV for the first triplet state
T1 to 0.504 eV for the singlet state S6 which leads to an average deviation of
0.340 eV. Additionally, the sa-CASSSCF and the sa-CASPT2 results are also
in good agreement with the results of the EOM-CCSD method, where the
sa-CASMP2 excitation energies are higher than the corresponding
sa-CASSCF values for all states shown. However, considering the results of
the CIS calculation the singlet states S1 and S4 are much higher than the re-
sults of the other approaches except SAS-FCI. Thus, except for the S8 states
the comparison shows a good agreement in the order of the states and of
the excitation energies of the B0 method with the Hv and the EOM-CCSD
results. Here, the poor performance of the B0 approach for the S8 states re-
sults from the multiconfiguration character which should comprise at least
five determinants in contrast to the two determinant-ansatz for the refer-
ence function in the case of the B0 approximation.

The results of Table XIII illustrates that the B0 approach suffices to treat
the singlet and triplet states for the isolated phenolate anion. Moreover, it
also illustrates the limitation of the two-determinant reference-state ansatz.
Here, it should also be emphasized that a calculation of the correlation en-
ergy for each state comprise about two third of the calculation whereas the
SCF part covers the first third of the calculation (SCF: ≈25 s/B0: ≈50 s).

IV. CONCLUSION

In this paper we explored the efficiency and reliability of the direct iterative
approach to the solution of the generalized Bloch equation at the computa-
tional most efficient level, the B0 approach and B0-based approaches as
well. Since we are interested in methods which can be easily extended and
applied to large molecular systems, the B0 approach seems to be an effi-
ciency and reliability candidate for that purpose. In order to test the reli-
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ability of the B0 approaches, we compare these B0 approximations with ex-
perimental data, if available, and approaches with and without relying on
the exponential cluster expansion ansatz.

For the purpose of assessment of the B0 and B0-based approaches in the
case of the Li and Be atoms, we determine the energies of the ground states
and the excited states as well as the polarizabilities α and γ of Li. Whereas,
in the case of LiH and BeH, we calculate the PECs of the ground state in the
range of the internuclear separation from 1 to about 15 a.u. obtained with
cc-pV(D,T,Q)Z basis sets for the determination of the spectroscopic coeffi-
cients and the vibrational levels. Furthermore, dissociation energies and the
dipole moments of the equilibrium geometry have been calculated. Then
the results are compared with MP2 and other higher level DGB, CI, and CC
methods as well as with FCI and experimental results (if available). For the
phenolate anion we use the 4-31G basis set at a optimized geometry to cal-
culate the excitation energies. Here, we compare the B0 results with the ef-
fective valence shell Hamiltonian (Hv) method, the EOM-CCSD, CASSCF,
CASMP2, and CIS approach.

The analysis of these calculations leads to the following conclusion:
Taking into account the simplicity and the computational low requirement
of the B0 approximations, we obtain a qualitative and in some cases also
quantitative good agreement with the benchmark FCI results and even with
the experimental results if we systematically improve the method proceed-
ing from the very affordable, low-level B0 to a low-level internal correction,
as well as to size-extensive corrections on top which are usually based on
the CISD approximation. Here, it should be emphasized that the B0 ap-
proach leads in some cases to similar results, e.g. for spectroscopic con-
stants, as MP2 at the equilibrium geometry. However, B0 provides a much
better behavior considering stretched internuclear separation. The B0
method does not suffer of the divergent behavior as MP2. Also in the case
of the vertical excitation energies for the phenolate anion the B0 approach
leads to sufficient results by low computational cost compared e.g. with the
results of the low-lying states of the EOM-CCSD, and even if we compare
the results with the widely used CIS approach. The B0 approach suffices to
treat the low-lying singlet and triplet states for the isolated phenolate an-
ion.

It means that the approximations employed in this paper, namely B0 and
the B0-based corrections – be it the internal correction or the size-
extensivity correction – may not be suitable when high accuracy is required.
However, these approaches seem to be useful when reasonable results are
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asked for medium-sized or large systems by low computational cost where
no methods of chemical accuracy are available.
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